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Decision Tree 

What is a Decision Tree? 

Decision trees are powerful and interpretable tools for identifying patterns and 
making classifications. They are a great choice when you need a clear 
understanding of the factors influencing the model's decisions, especially for tasks 
with categorical features. However, for continuous features or complex 
relationships, you might consider other machine learning algorithms. 

Example : Approving Loan Applications 

A bank can use a decision tree to decide whether to approve or reject loan applications. The 

features (clues) might include: 

 Income: How much money does the applicant earn? 

 Employment: Are they employed full-time, part-time, or self-employed? 

 Credit Score: What is their history of repaying debts? 

 Loan Amount: How much money are they requesting? 

The decision tree might ask questions like: 

 Root Node: All loan applications 

 Internal Node 1: Does the applicant have a good credit score (e.g., above 720)? 

o Yes Branch: Further questions might refine based on income and loan amount. 



o No Branch: Rejection is more likely, but the tree can still consider other factors 

for borderline cases. 

By following these questions and branches, the decision tree can classify loan applications as 

"Approved" or "Rejected" based on patterns in successful and unsuccessful loans from the past. 

Example 2: Predicting Customer Churn 

A company selling subscriptions (like a streaming service) can use a decision tree to predict 

which customers are likely to cancel their subscription (churn). Features could include: 

 Number of Logins: How often does the customer use the service? 

 Subscription Length: How long have they been subscribed? 

 Recent Movie/Music Choices: What type of content are they watching/listening to? 

 Customer Support Interactions: Have they contacted support recently? 

 

 

The decision tree could ask questions like: 

 Root Node: All subscribers 

 Internal Node 1: Has the customer logged in less than once a week in the past month? 

o Yes Branch: Consider other factors like subscription length and content choices. 

Churn is more likely. 

o No Branch: Customer is actively using the service. Further questions might 

assess satisfaction (e.g., recent support interactions). 

Based on past customer behavior, this decision tree can identify patterns that predict churn risk 

and help the company target retention efforts towards those customers most likely to cancel. 

Structure of a decision tree: 

Leaves (Terminal Nodes): These are the final destinations of the decision-making process in a 

tree. They represent the predicted outcome or target variable. 

 Each Leaf Represents a Class Label: In classification tasks, each leaf node holds a 

specific class label. For example, in a decision tree predicting whether an email is spam 

or not, the leaf nodes might be labeled "Spam" or "Not Spam." 

 Each Internal Node Denotes a Test on an Attribute: These are the decision points 

within the tree. At each internal node, a test is performed on a single attribute (feature) 

from the data. 

 Edges to Children for Each Possible Value of that Attribute: Based on the outcome of 

the test at an internal node, the decision tree branches out. Each branch represents a 



possible value of the attribute being tested. For example, if the test is "Is the email from a 

known spam sender?" the branches might be "Yes" and "No." 

Here's an illustration: 

          Is email from known spam sender? 

          /                               \ 

         Yes                                 No 

        /                                   \ 

       Contains suspicious keywords?          Sender's domain blacklisted? 

      /                          \            /                \ 

     Yes (Spam)                   No           Yes (Spam)            No (Not 

Spam) 

In this example: 

 The root node is the starting point, representing all emails. 

 The first internal node tests the sender's reputation (known spam sender). 

 Branches lead to further tests based on the sender (Yes/No). 

 Additional tests might involve keywords or domain blacklists. 

 Leaf nodes represent the final classifications (Spam/Not Spam). 

Decision Tree Learning: From Training Data to 

Classification 

Decision Tree Learning: Building the Model 

This refers to the process of constructing a decision tree from a set of training samples (data 

points with known outcomes). In data mining, decision trees are often used for classification 

tasks, where the goal is to predict the category (class) an unseen data point belongs to. 

Algorithms for Decision Tree Learning: 

Several algorithms exist for building decision trees, including: 

 ID3 (Iterative Dichotomiser 3): A foundational algorithm for decision tree learning. 

 C4.5: An extension of ID3 that handles continuous features (numerical values) and 

missing data. 

These algorithms build a tree by recursively splitting the data into subsets based on the most 

informative feature (attribute) at each step. 

Challenges of Optimality: 

Learning an absolutely optimal decision tree (the one that perfectly classifies all data points) is a 

computationally expensive problem (NP-Complete). In simpler terms, finding the best possible 

tree can become very time-consuming for large datasets. 



Greedy Search and Heuristics: 

For practical reasons, decision tree learning algorithms use a greedy search approach guided by 

a heuristic. This means they make locally optimal choices at each step, aiming to find a "good 

enough" solution efficiently. 

Greedy Top-Down Approach: 

The most common strategy is a greedy top-down approach. It works like this: 

1. Start with the entire dataset at the root node. 

2. Choose the attribute that best separates the data points into distinct classes. 

3. Split the data based on the chosen attribute's values, creating branches for each possible 

value. 

4. Repeat steps 2 and 3 recursively for each branch until a stopping criterion is met (e.g., all 

data points in a branch belong to the same class, or reaching a maximum depth for the 

tree). 

By recursively splitting the data based on the most informative attributes, the algorithm builds a 

decision tree that effectively classifies new data points. 

In essence: 

Decision tree learning takes training data and uses a greedy approach to construct a tree-like 

model. This model classifies new data points by following a series of questions (tests on 

attributes) until reaching a leaf node that represents the predicted class. While not guaranteed to 

be the absolute best tree, this approach is efficient and often produces good results for 

classification tasks. 

Construct a basic decision tree 

Goal: 

 Construct a decision tree with few nodes (compact and simple) for efficient classification. 

Steps: 

1. Start with the entire training data set (S) at the root node. 

2. Choose the best attribute (a) at the root:  
o We need a measure of how well an attribute separates the data into groups with 

the same target value (class label). This measure is often called impurity or 

information gain. 

o Common choices include Gini impurity and information entropy. These 

metrics assess how "mixed up" the target variable is within each subset created by 

splitting on an attribute. 



o Choose the attribute (a) that results in the most homogeneous subsets (lowest 

impurity) after splitting. 

3. Create a branch for each possible value of the chosen attribute (a):  
o For each value (e.g., "Yes" or "No" for a yes/no attribute), create a descendant 

node (child node) representing the data points that fall into that category. 

4. Recursively apply steps 2 and 3 to each descendant node:  
o For each child node, consider the remaining attributes (A \ {a}), excluding the 

attribute already used for splitting. 

o Repeat the process of finding the best attribute for that node and splitting the data 

based on its values. 

5. Stop the recursion when a stopping criterion is met:  
o There are no more attributes left (A is empty). 

o All data points in a node belong to the same class (perfectly pure). 

o Reaching a maximum depth for the tree (avoid overly complex trees). 

6. Assign a class label to each leaf node:  
o The class label is the most common class in the data points reaching that leaf 

node. 

o  

An example pseudocode: 

Function FindTree(S, A) 

  If empty(A) or all labels of the samples in S are the same 

    status = leaf 

    class = most common class in the labels of S 

  else 

    status = internal 

    a ← bestAttribute(S, A) 

    LeftNode = FindTree(S(a=1), A \ {a}) 

    RightNode = FindTree(S(a=0), A \ {a}) 

  end 

end 

Explanation of the code: 

 FindTree(S, A): This function takes the training data set (S) and available attributes (A) 

as input and returns the constructed decision tree. 

 The function checks if all samples in S have the same label or if there are no more 

attributes left. If so, it creates a leaf node with the most common class label. 

 Otherwise, it finds the best attribute a for splitting and creates internal nodes (decision 

points). 

 LeftNode and RightNode represent recursive calls to create subtrees for each possible 

value of the chosen attribute. S(a=1) refers to the subset of S where attribute a has value 

1 (similarly for value 0). 

Remember: 

 This is a greedy top-down approach, making locally optimal choices at each step. 



 There's no backtracking, meaning the algorithm doesn't revisit previous decisions. 

 The recursion stops when the data is perfectly classified or when further splitting doesn't 

improve predictions. 

 

ID3 Algorithm: 

The ID3 algorithm is a fundamental decision tree learning algorithm used to generate a decision 

tree from a dataset. It takes a set of examples (data points), a target attribute (the variable you 

want to predict), and the available attributes (features) as input. 

Steps: 

1. Create a root node: This is the starting point of the tree. 

2. Check for pure classes: 
o If all examples in the dataset belong to the same positive class (label = "+"), the 

root node becomes a leaf labeled "+". 

o Similarly, if all examples are negative (label = "-"), the root node becomes a leaf 

labeled "-". 

3. Handle empty attributes: 
o If there are no more attributes left (meaning all features have been used for 

splitting), the root node becomes a leaf labeled with the most common value of 

the target attribute in the examples. 

4. Choose the best attribute: 
o ID3 uses a measure like information gain to determine the attribute that best 

separates the examples into distinct classes. 

o This "best attribute" becomes the testing attribute at the root node. 

5. Create branches for each attribute value: 
o For each possible value (#) of the chosen attribute (A), a new branch is added to 

the root node representing that specific value. 

6. Recursively build subtrees: 
o For each branch, a subset of examples (Examples(#)) is created based on the 

attribute value. 

o If a branch's subset is empty (no examples have that value), a leaf node is added 

with the most common target value in the overall dataset (not just the empty 

subset). 

o Otherwise, the ID3 algorithm is called recursively on this subset (Examples(#)), 

with the remaining attributes (excluding the one used for splitting at this node) to 

further build the subtree. 

In essence: 

ID3 starts at the root and iteratively splits the data based on the attribute that best separates the 

classes. It continues recursively until all data points belong to the same class (pure) or until there 



are no more attributes left. The resulting tree structure provides a clear decision-making process 

for classifying new data points. 

When constructing a decision tree, we need a way to determine which attribute (feature) is the 

"best" for splitting the data at each node. 

Choosing the Best Attribute: 

 This decision is crucial for building an effective decision tree. The chosen attribute 

should effectively separate the data points into subsets that are more homogeneous 

(having the same class label) compared to the original set. 

 There are various heuristics (rules of thumb) used to measure the quality of a split based 

on an attribute. Common choices include: 

o Information Gain (ID3): This metric originated with the ID3 algorithm. It 

measures how much the attribute reduces uncertainty (entropy) about the target 

variable after the split. A higher information gain indicates a better split. 

o Gini Impurity: This metric calculates how likely a randomly chosen example 

from a subset would be incorrectly labeled if its class label were randomly picked 

from the distribution of labels in that subset. A lower Gini impurity signifies a 

better split. 

How it Works: 

1. For each candidate attribute (feature), the algorithm calculates the metric (e.g., 

information gain or Gini impurity) for the split it would create. 

2. This metric is applied to each subset created by the potential split. 

3. These individual values are then combined (e.g., averaged) to provide a single score 

representing the overall quality of the split based on that attribute. 

Choosing the Winner: 

 The attribute with the highest information gain (or lowest Gini impurity) is considered 

the "best" attribute for splitting at that node in the decision tree. 

 This process is repeated recursively on the resulting subsets, using the remaining 

attributes to further refine the decision tree. 

 

Entropy: A Measure of Uncertainty 

The (Entropy = -Σ(p(i) * log2(p(i)))) calculates the entropy of a distribution. In simpler terms, it 

measures the average level of uncertainty associated with the possible outcomes in that 

distribution. 



 Higher Entropy: Indicates a more uncertain distribution, where it's harder to predict the 

next value because there are multiple possibilities with relatively equal probabilities. 

 Lower Entropy: Represents a more certain distribution, where the next value is easier to 

predict because there's a clear dominant possibility. 

Entropy in Decision Trees: 

In decision trees, we want to reduce uncertainty about the target variable (the variable we're 

trying to predict) as we navigate through the tree. Information gain, a key metric used in ID3, 

leverages entropy to achieve this goal. 

Information Gain: Building on Entropy 

1. Before the Split: Imagine we have a dataset with various features, and we haven't made 

any splits yet. The entropy of this entire dataset represents the initial uncertainty about 

the target variable. 

2. Splitting on an Attribute: Now, consider splitting the data based on a specific attribute 

(feature). This split creates subsets of data points with potentially different distributions 

for the target variable. 

3. Entropy after Split: We calculate the entropy of each subset. These represent the 

remaining uncertainty about the target variable within each subgroup. 

4. Information Gain: We calculate the information gain, which is essentially the difference 

between the initial entropy (before the split) and the weighted average of the entropies in 

the resulting subsets (after the split). 

Choosing the Best Split: 

The attribute that leads to the highest information gain is considered the best choice for 

splitting at a node in the decision tree. This is because it results in the most significant reduction 

in uncertainty about the target variable. 

Example: 

 Imagine a dataset classifying emails as spam or not spam. Entropy before splitting might 

be high, reflecting uncertainty. 

 Splitting by "sender's reputation" (known spammer or not) might create subsets with 

lower entropies (more certainty about spam/not spam within each group). 

 If the information gain from this split is high, it suggests a good separation, making 

"sender's reputation" a valuable attribute for the decision tree. 

By using information gain (which relies on entropy calculations), decision trees can effectively 

choose attributes that best separate the data and reduce uncertainty about the target variable, 

leading to a more accurate model. 

In essence: 



Entropy provides a quantitative measure of uncertainty in a distribution. Information gain, built 

upon entropy, helps decision trees identify the most informative attributes for splitting the data, 

ultimately leading to a more efficient and accurate classification model. 

 

Information gain (IG) and its relationship to mutual information in decision trees: 

Information Gain (IG): 

 Used for splitting samples: In decision trees, information gain is a metric that helps us 

determine the "best" attribute (feature) to split the data at each node. 

 Reduction in entropy: It measures the expected reduction in uncertainty (entropy) 

about the target variable (Y) after splitting the data based on a particular attribute (X). 

 Formula calculates the information gain: 

IG(Y|X) = Entropy(Y) - H(Y|X) 

 Entropy(Y): Represents the initial uncertainty about the target variable before splitting. 

 H(Y|X): Represents the conditional entropy of Y given X, which is the average 

remaining uncertainty about Y after we know the value of X. 

Mutual Information (MI): 

 Relationship to IG: Mutual information is a more general concept that measures the 

mutual dependence between two variables (X and Y). It quantifies the amount of 

information one variable (X) tells us about the other (Y). 

 Connection to decision trees: While information gain isn't directly synonymous with 

mutual information, they are closely related. In the context of decision trees, information 

gain can be seen as an estimate of mutual information between the target variable (Y) 

and the attribute (X) being considered for splitting. 

Understanding Information Gain with Mutual Information: 

Imagine a dataset classifying emails as spam or not spam (Y). Consider an attribute "sender's 

reputation" (X). 

1. Entropy of Y (Initial Uncertainty): Before splitting, the entropy of the target variable Y 

(spam/not spam) represents our initial uncertainty about the email classification. 

2. Splitting on X (Sender's Reputation): We split the data based on the sender's reputation 

(known spammer or not). 

3. Conditional Entropy (Uncertainty After Split): We calculate the entropy of Y 

(spam/not spam) within each subgroup (known spammer emails and non-spammer 

emails). These represent the conditional entropies (H(Y|X)) because the knowledge of X 

(sender's reputation) influences this remaining uncertainty. 



4. Information Gain (Reduction in Uncertainty): We calculate the information gain 

(IG(Y|X)), which is the difference between the initial entropy (before splitting) and the 

weighted average of the conditional entropies (after splitting). 

Mutual information provides a theoretical framework for understanding the relationship 

between the target variable and the attribute. Information gain, in the context of decision 

trees, leverages this concept to make practical decisions about splitting the data. 

 Information gain estimates mutual information between the target variable and the 

attribute. 

 Both concepts help us understand how much an attribute reduces uncertainty about the 

target variable. 

 Information gain guides decision tree construction by choosing attributes that lead to the 

most significant improvement (reduction in uncertainty). 

 

 

Finding the Best Attribute with Information Gain: 

1. Calculate Information Gain for Each Attribute: 
o For each attribute (feature) in your dataset, calculate the information gain (IG) 

that would result from splitting the data based on that attribute. 

2. Choose the Attribute with Maximum Information Gain: 
o The attribute with the highest information gain is considered the "best" for 

splitting at that node. This is because it leads to the most significant reduction in 

uncertainty (entropy) about the target variable after the split. 

Formula and Notation: 

Calculates the argument for the maximum information gain: 

N = argmax_#∈d { IG(#) } = argmax_#∈d { Entropy(Y) - H(Y|#) } 

 N: Index of the attribute with the highest information gain. 

 #: Represents each attribute (feature) under consideration. 

 d: Total number of attributes. 

 IG(#): Information gain when splitting on attribute #. 

 Entropy(Y): Initial entropy of the target variable (Y) before splitting. 

 H(Y|#): Conditional entropy of Y given attribute # (uncertainty remaining after splitting 

on #). 

ID3 Algorithm and Finding Best Attribute: 



The ID3 algorithm utilizes this concept of finding the best attribute with maximum information 

gain: 

 Properties: 
o ID3 stops when it reaches pure nodes (all data points in a node belong to the same 

class) or when there are no more attributes left. 

o It's guaranteed to find a decision tree consistent with a conflict-free training set (a 

set where data points with identical features always have the same class label). 

o However, it doesn't necessarily find the simplest tree (with the fewest nodes) 

because it's a greedy algorithm making locally optimal choices at each step (no 

backtracking to revisit previous decisions). 

Decision Tree Learning as Function Approximation: 

Decision tree learning can be seen as a function approximation problem. It aims to learn a 

function (the decision tree) that maps input instances (data points) to target values (class labels) 

based on a set of training examples. 

 

Points: 

 The set of possible instances (') represents all potential data points. 

 The unknown target function (p) maps each instance to its corresponding target value 

(class label). 

 The set of function hypotheses (&) represents all possible decision trees that can be built 

from the available attributes. 

 The training examples ((u_i, S_i)) are pairs of data points (u_i) and their corresponding 

target values (S_i). 

 The goal is to find a hypothesis (decision tree) from & that best approximates the 

unknown target function (p) based on the training data. 

By using information gain to find the best attribute for splitting at each node, decision trees 

effectively approximate the target function and learn to classify new data points. 

In essence: 

Information gain is a powerful tool for identifying the most informative attribute for separating 

the data in a decision tree. This approach helps build a model that efficiently reduces uncertainty 

about the target variable, leading to accurate classifications. 

Decision Tree Hypothesis Space: 

 Set of possible trees: When considering decision trees, the hypothesis space refers to all 

the unique decision trees that can be built using the available attributes and their values. 



 Focus on Boolean Attributes: example, assumed Boolean attributes (True/False or 1/0 

values). This simplifies the analysis. 

 Disjunction of Conjunctions: Decision trees learned with Boolean attributes can be 

expressed as a disjunction (OR) of conjunctions (AND). 

o Disjunction (OR): The tree can follow multiple paths from the root to reach a 

leaf node, representing different combinations of attribute values. 

o Conjunction (AND): Each path from the root to a leaf represents a conjunction 

of specific attribute tests (True or False) that lead to a particular outcome. 

Representing Functions with Trees: 

1. S = / U >?Q / v (Function 1): 
o This function can be represented by a tree with two branches at the root.  

 Left branch: Test if attribute "/" is True (/) 

 Right branch: Test if attribute ">?Q" is True (>?Q) 

o Both branches lead to leaf nodes with the corresponding output value (S = / or S = 

v). 

2. S = / U [\ / V (Function 2): 
o Similar to function 1, the root can have two branches.  

 Left branch: Test if attribute "/" is True (/) 

 Right branch: Test if the combination of attributes "/ V" (both True) holds. 

o The left branch leads to a leaf with S = /, while the right branch can lead to 

another leaf with S = v depending on the specific meaning of "/ V" (likely both 

attributes need to be True). 

3. S = (/ U >?Q / v) [(/ 5 >?Q ¬/ V) ? (Function 3): 
o This function is more complex and requires a deeper tree.  

 Root tests "/" attribute.  

 Left branch: Test ">?Q" (similar to function 1). 

 Right branch: Another test on the combination "/ 5" (both True?).  

 If "/ 5" is True, test ">?Q" (similar to function 1). 

 If "/ 5" is False, test the combination "¬/ V" (attribute "/" is 

False AND attribute "V" is True). 

o Each branch ultimately leads to a leaf with the corresponding output value (S = /, 

v, or ? depending on the outcome of the tests). 

Decision Trees as Rule Bases: 

Decision trees can be interpreted as a set of rules. Each path from the root to a leaf represents a 

single rule. The rule consists of a conjunction of attribute tests that need to be satisfied to reach 

the leaf node, which indicates the predicted outcome (class label). 

Finding Rules for S = 2: 

For each function, identify all paths that lead to leaves with S = 2 (if applicable). These paths 

represent the specific rules where the combination of attribute tests results in the output S = 2. 



 

Overfitting in Decision Trees: 

 Memorizing Training Data: ID3, in its pursuit of perfect classification on the training 

data, can sometimes overfit the data. This means it memorizes specific details or noise in 

the training examples rather than capturing the underlying general patterns. 

 Poor Generalization: As a result, an overfit decision tree performs well on the training 

data but fails to generalize well to unseen data. It might make incorrect predictions for 

new data points that don't perfectly match the memorized training examples. 

Factors Contributing to Overfitting: 

 Limited Data: When there's very little data, decision trees might struggle to identify true 

patterns and overfit to random variations in the data. 

 Noise in Training Data: If the training data contains noise or errors, ID3 might 

mistakenly incorporate that noise into the decision tree, leading to inaccurate splits. 

 

Example: Noisy Training Example and Overfitting: 

Let's consider an example of adding a noisy training instance to the classic "Play Tennis" 

decision tree dataset: 

 Original Data: Imagine the original data suggests a decision tree rule like "If it's Sunny 

and Hot, then PlayTennis = No" based on most examples. 

 Noisy Example: Adding a new example like "Sunny, Hot, Normal, Strong, No" (where 

PlayTennis = No despite seemingly favorable conditions) can mislead ID3. 

 Overfitting Due to Noise: To perfectly classify this noisy example, ID3 might create a 

very specific rule like "If it's Sunny, Hot, Normal Wind, and Strong Wind, then 

PlayTennis = No." This rule captures the specific noise in the new example but doesn't 

reflect the general trend in the data. 



 

Consequences of Overfitting: 

 Reduced Accuracy on New Data: The overfit decision tree, with its overly specific 

rules, might incorrectly classify future data points that don't perfectly match the 

memorized examples. 

 Loss of Interpretability: Complex trees with many splits due to overfitting can be 

harder to interpret and understand the decision-making process. 

Mitigating Overfitting: 

Several techniques can help address overfitting in decision trees: 

 Pruning: Techniques like pre-pruning (stopping tree growth early) or post-pruning 

(removing unnecessary branches) can simplify the tree and reduce overfitting. 

 Regularization: Setting constraints on the tree's complexity (e.g., limiting the maximum 

depth) can prevent excessive growth. 

 Data Augmentation: Increasing the amount of training data through techniques like data 

augmentation can help reduce the impact of noise and improve generalization. 

By understanding and addressing overfitting, we can build decision trees that are more accurate 

and reliable on unseen data. 

 

Techniques to make decision trees smaller and simpler, avoiding overfitting: 

Making Decision Trees Smaller and Simpler: 

 Early Stopping: This technique stops growing the tree when a certain criterion is met. 

Common criteria include: 



o Statistical Significance: Halt growth if the split between data points at a node is 

not statistically significant (doesn't provide a strong improvement). 

o Maximum Depth: Limit the tree's depth to a predetermined value to prevent 

excessive complexity. 

 Leaf Impurity Handling: There are two main approaches to determine the class label 

for an impure leaf node (where data points belong to multiple classes): 

o Majority Class: Assign the label of the most frequent class in the leaf node. 

o Probabilities: Estimate the probability of each class being present in the leaf 

node. 

 Pruning: This technique involves removing unnecessary branches from a fully grown 

tree: 

o Post-Pruning: Build the entire tree first and then go back and remove branches 

that don't contribute significantly to accuracy. This is often more successful than 

early stopping in practice. 

Selecting the "Best" Tree: 

 Validation Set: To avoid overfitting when evaluating different tree sizes or pruning 

strategies, use a separate validation set that the model hasn't seen during training. 

Evaluate the performance of different tree sizes or pruning levels on the validation set to 

choose the one that generalizes best to unseen data. 

 MDL (Minimum Description Length): This principle aims to find a balance between 

model complexity and accuracy. It suggests that the best tree minimizes the sum of two 

terms: 

o The first term: Represents the complexity of the tree (e.g., number of leaves). 

o The second term: Represents the error on the training data. 

 

 

 

Reduced-Error Pruning: 

This is a specific post-pruning technique that iteratively removes sub-trees to improve the 

model's performance on unseen data: 

1. Split Data: Divide the data into a training set and a validation set. 

2. Build the Tree: Train a decision tree using the training set. 

3. Iterative Pruning: 
o For each node in the tree: 

 Temporarily remove the sub-tree rooted at that node. 

 Replace it with a leaf labeled with the majority class at that node. 

 Evaluate the performance of the pruned tree on the validation set. 



o If any sub-tree removal improves the validation set accuracy, permanently remove 

the sub-tree that led to the biggest improvement. 

4. Stop Pruning: Continue this process until further pruning stops improving the validation 

set accuracy. 

Points: 

 Early stopping and pruning help prevent overfitting by controlling the complexity of the 

decision tree. 

 Selecting the "best" tree involves evaluating performance on unseen data (validation set) 

to avoid overfitting to the training data. 

 Reduced-error pruning is a systematic approach to post-pruning that emphasizes 

improving performance on unseen data. 

By applying these techniques, we can build decision trees that are not only smaller and simpler 

but also less prone to overfitting and more generalizable to new data. 

 

C4.5: An Extension of ID3 

C4.5 is an algorithm that builds decision trees similar to ID3. However, it introduces several 

enhancements: 

 Handling Continuous Attributes: C4.5 can handle continuous data by creating 

thresholds to split the data at specific values. ID3 typically requires discretizing 

continuous attributes beforehand. 

 Addressing Missing Values: C4.5 can account for missing attribute values in the data, 

while ID3 might struggle with them. 

 Rule Generation and Pruning: C4.5 can convert the decision tree into a set of rules and 

then prune those rules to improve generalization and reduce overfitting. 

  

Converting Tree to Rules for Pruning: 

One interesting aspect of C4.5 is that it converts the decision tree into a set of rules before 

applying pruning.  

Advantageous: 

 Distinguishing Context: In a decision tree, the context (set of possible data points 

reaching a node) can be different for tests near the root compared to those near the leaves. 

Converting to rules makes the context more explicit for each condition. 

 Pruning Flexibility: By separating conditions into individual rules, C4.5 can prune each 

rule independently. This allows for more fine-grained control over how pruning affects 



the overall model. Imagine a rule with multiple conditions (tests). Pruning in the tree 

might remove the entire rule, while pruning the rule set can remove specific conditions 

that might be irrelevant without affecting other parts of the model. 

 Redundancy Removal: C4.5 can identify and remove redundant rules that might exist in 

the rule set after conversion. This further simplifies the model. 

Pruning in C4.5: 

C4.5 employs a technique called "rule pruning" after converting the tree to rules. This pruning 

process involves: 

1. Estimating Accuracy: It estimates the accuracy of each individual rule on unseen data 

(e.g., using a validation set). 

2. Pruning for Improvement: It analyzes if removing a specific condition (precondition) 

from a rule can improve the estimated accuracy on unseen data. 

3. Iterative Pruning: It continues this process for each rule, removing any condition that 

leads to better accuracy without sacrificing coverage (ability to classify data points). 

Benefit: 

By converting the tree to rules and then applying pruning, C4.5 achieves a more flexible and 

effective approach to reducing overfitting in decision trees. It can remove unnecessary conditions 

and simplify the model while maintaining good classification performance. 

In essence, C4.5 builds on the strengths of ID3 and offers a more robust and adaptable decision 

tree learning approach, especially when dealing with continuous data, missing values, and the 

need to balance model complexity with generalization. 

Continuous Attributes: 

 Challenges: Decision trees traditionally work with discrete attributes (Yes/No or specific 

categories). Continuous attributes (numerical values) require special handling. 

 Approaches: 
o Thresholding: We can convert continuous attributes into binary splits by defining 

a threshold value. Information gain can be calculated for all possible thresholds in 

the data (finite number of samples), and the one with the highest gain is chosen 

for the split. 

o Discretization: We can discretize the continuous attribute into a fixed number of 

intervals (bins) beforehand. This requires choosing an appropriate discretization 

method to avoid losing information. 

Information Gain Bias: 

Information gain can be biased towards attributes with more distinct values (levels). This is 

because such attributes offer more opportunities to create splits. 



Alternative Splitting Criteria: 

 Gain Ratio: This is a modification of information gain that addresses the bias towards 

attributes with many levels. It incorporates a "split penalty" term that discourages 

creating too many splits. 

Gain Ratio(Y|X) = Gain(Y|X) / Split Information(X) 

 Gini Impurity: This is another measure used for splitting criteria. It reflects the 

probability of a randomly chosen instance from a node being misclassified if labeled 

according to the majority class in that node. 

Decision Tree Advantages: 

1. Interpretability: Decision trees are easy to understand and interpret. The tree structure 

clearly shows the decision-making process, with each node representing a question and 

each branch representing a possible answer. 

2. Data Efficiency: Decision trees require relatively little data preparation compared to 

some other algorithms. They can handle both numerical and categorical data natively. 

3. Scalability: Decision tree algorithms are efficient for learning from large datasets. They 

can scale well to large amounts of data without significant performance degradation. 

4. Robustness: Decision trees are relatively robust to noise and missing values in the data. 

They can still produce reasonable results even if the data doesn't perfectly adhere to the 

assumptions of the algorithm. 

While information gain can be biased towards attributes with many levels, alternative splitting 

criteria offer solutions. Decision trees, despite these considerations, offer significant advantages 

in terms of interpretability, data efficiency, scalability, and robustness. This makes them a 

popular choice for various classification and prediction tasks. 

 


